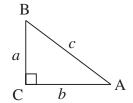
UNIT CONVERSION

	Common Imperial	Imperial and Metric	Metric
Length	1 mile = 1760 yards	1 mile ≈ 1.609 km	1 km = 1000 m
	1 mile = 5280 feet	1 yard ≈ 0.9144 m	1 m = 100 cm
	1 yard = 3 feet	$1 \text{ foot} \approx 0.3048 \text{ m}$	1 cm = 10 mm
	1 yard = 36 inches	$1 \text{ inch} \approx 2.54 \text{ cm}$	2 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	1 foot = 12 inches		
Mass	1 ton = 2000 pounds	1 pound ≈ 0.454 kg	1 t = 1000 kg
(Weight)	1 pound = 16 ounces	1 ounce ≈ 28.35 g	1 kg = 1000 g
Common	mile = mi		kilometre = km
Abbrevia-	yard = yd		metre = m
tions	ton = ton		centimetre = cm
	feet = ' or ft		millimetre = mm
	inch = " or in		tonne (metric ton) = t
	pound = lb		gram = g
	ounce = oz		

FORMULAE


(Put your calculator in Degree Mode)

• Right triangles

$$\sin A = \frac{\text{opposite}}{\text{hypotenuse}}$$

$$\cos A = \frac{\text{adjacent}}{\text{hypotenuse}}$$

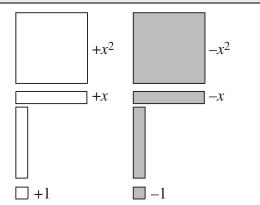
$$\tan A = \frac{\text{opposite}}{\text{adjacent}}$$

Pythagorean Theorem

$$a^2 + b^2 = c^2$$

 $distance = speed \times time$

• The equation of a line:


$$y = mx + b$$
$$Ax + By + C = 0$$

$$y - y_1 = m \left(\right)$$

• The slope of a line:

$$m = \frac{\text{rise}}{\text{run}} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

Math Tiles Legend

GEOMETRIC FORMULAE

Key Legend			
l = length	P = perimeter		
w = width	C = circumference		
b = base	A = area		
h = height	SA = surface area		
s = slant height	V = volume		
r = radius			
d = diameter			

Geometric Figure	Perimeter	Area
Rectangle	P = 2l + 2w	
l	or	A = lw
	P = 2()	
Triangle		
	P = a + b + c	$A = \frac{bh}{2}$
Circle	$C = \pi d$	
	or	$A = \pi r^2$
d	$C = 2\pi r$	

NOTE: Use the value of π programmed in your calculator rather than the approximation of 3.14.

Geometric Figure	Surface Area	Volume
Cylinder	$A_{top} = \pi r^{2}$ $A_{base} = \pi r^{2}$ $A_{side} = 2\pi rh$ $SA = 2\pi r^{2} + 2\pi rh$	$V = ($ $) \times h$
Sphere	$SA = 4\pi r^2$ or $SA = \pi d^2$	$V = \frac{4}{3}\pi r^3$
Cone	$A_{side} = \pi r s$ $A_{base} = \pi r^{2}$ $SA = \pi r^{2} + \pi r s$	$V = \frac{1}{3} \times () \times h$
Square-Based Pyramid	$A_{triangle} = \frac{1}{2}bs ($ $A_{base} = b^{2}$ $SA = 2bs + b^{2}$	$V = \frac{1}{3} \times () \times h$
Rectangular Prism h l	SA = wh + wh + lw + lw + lh + lh or SA = 2($V = ($ $) \times h$
General Right Prism	SA = the sum of the areas of all the faces	$V = ($ $) \times h$
General Pyramid	SA = the sum of the areas of all the faces	$V = \frac{1}{3} \times () \times h$

NOTE: Use the value of π programmed in your calculator rather than the approximation of 3.14.