Unit Conversion

	Common Imperial	Imperial and Metric	Metric
Length	$\begin{aligned} & 1 \text { mile }=1760 \text { yards } \\ & 1 \text { mile }=5280 \text { feet } \\ & 1 \text { yard }=3 \text { feet } \\ & 1 \text { yard }=36 \text { inches } \\ & 1 \text { foot }=12 \text { inches } \end{aligned}$	$\begin{aligned} & 1 \mathrm{mile} \approx 1.609 \mathrm{~km} \\ & 1 \text { yard } \approx 0.9144 \mathrm{~m} \\ & 1 \text { foot } \approx 0.3048 \mathrm{~m} \\ & 1 \mathrm{inch} \approx 2.54 \mathrm{~cm} \end{aligned}$	$\begin{aligned} & 1 \mathrm{~km}=1000 \mathrm{~m} \\ & 1 \mathrm{~m}=100 \mathrm{~cm} \\ & 1 \mathrm{~cm}=10 \mathrm{~mm} \end{aligned}$
Mass (Weight)	1 ton $=2000$ pounds 1 pound $=16$ ounces	$\begin{aligned} & 1 \text { pound } \approx 0.454 \mathrm{~kg} \\ & 1 \text { ounce } \approx 28.35 \mathrm{~g} \end{aligned}$	$\begin{aligned} & 1 \mathrm{t}=1000 \mathrm{~kg} \\ & 1 \mathrm{~kg}=1000 \mathrm{~g} \end{aligned}$
Common Abbreviations	$\begin{aligned} & \text { mile }=\mathrm{mi} \\ & \text { yard }=\mathrm{yd} \\ & \text { ton }=\text { ton } \\ & \text { feet }=\text { ' or } \mathrm{ft} \\ & \text { inch }=\text { " or in } \\ & \text { pound }=\mathrm{lb} \\ & \text { ounce }=\mathrm{oz} \end{aligned}$		$\begin{aligned} & \text { kilometre }=\mathrm{km} \\ & \text { metre }=\mathrm{m} \\ & \text { centimetre }=\mathrm{cm} \\ & \text { millimetre }=\mathrm{mm} \\ & \text { tonne }(\text { metric ton })=\mathrm{t} \\ & \text { gram }=\mathrm{g} \end{aligned}$

Formulae
(Put your calculator in Degree Mode)

- Right triangles
$\sin A=\frac{\text { opposite }}{\text { hypotenuse }}$
$\cos A=\frac{\text { adjacent }}{\text { hypotenuse }}$
$\tan A=\frac{\text { opposite }}{\text { adjacent }}$

Pythagorean Theorem

$a^{2}+b^{2}=c^{2}$
distance $=$ speed \times time

- The equation of a line:
$y=m x+b$
$\mathrm{A} x+\mathrm{B} y+\mathrm{C}=0$
$y-y_{1}=m(\quad)$
- The slope of a line:
$m=\frac{\text { rise }}{\text { run }}=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Geometric Formulae

Key Legend	
$l=$ length	$P=$ perimeter
$w=$ width	$C=$ circumference
$b=$ base	$A=$ area
$h=$ height	$S A=$ surface area
$s=$ slant height	$V=$ volume
$r=$ radius	
$d=$ diameter	

Geometric Figure	Perimeter	Area
Rectangle	$P=2 l+2 w$ or $P=2(\quad)$	$A=l w$
Triangle	$P=a+b+c$	$A=\frac{b h}{2}$
Circle	$C=\pi d$ or $C=2 \pi r$	$A=\pi r^{2}$

NOTE: Use the value of π programmed in your cal culator rather than the approximation of 3.14 .

Geometric Figure	Surface Area	Volume
Cylinder	$\begin{aligned} & A_{\text {top }}=\pi r^{2} \\ & A_{\text {base }}=\pi r^{2} \\ & A_{\text {side }}=2 \pi r h \\ & S A=2 \pi r^{2}+2 \pi r h \end{aligned}$	$V=(\quad) \times h$
Sphere	$S A=4 \pi r^{2}$ or $S A=\pi d^{2}$	$V=\frac{4}{3} \pi r^{3}$
Cone	$\begin{aligned} & A_{\text {side }}=\pi r s \\ & A_{\text {base }}=\pi r^{2} \\ & S A=\pi r^{2}+\pi r s \end{aligned}$	$V=\frac{1}{3} \times(\quad) \times h$
Square-Based Pyramid	$\begin{aligned} & A_{\text {triangle }}=\frac{1}{2} b s \\ & A_{\text {base }}=b^{2} \\ & S A=2 b s+b^{2} \end{aligned}$	$V=\frac{1}{3} \times(\quad) \times h$
Rectangular Prism l	$S A=w h+w h+l w+l w+l h+l h$ or $S A=2(\quad)$	$V=(\quad) \times h$
General Right Prism	$S A=$ the sum of the areas of all the faces	$V=(\quad) \times h$
General Pyramid	$S A=$ the sum of the areas of all the faces	$V=\frac{1}{3} \times(\quad) \times h$

[^0]NOTE: Use the value of π programmed in your cal culator rather than the approximation of 3.14.

[^0]:

